
Palos: Fair and Flexible Flow Scheduling on RNIC
Zhenlong Ma∗†, Fan Yang∗, Ning Kang∗, Jing Xu∗†, Guojun Yuan∗,

Zhan Wang∗, Ninghui Sun∗
∗Institute of Computing Technology, Chinese Academy of Sciences

†University of Chinese Academy of Sciences

Abstract—In recent years, Remote Direct Memory Access
(RDMA) has gained significant attraction within modern hyper-
scale data centers. However, RNIC fails to provide fine-grained
performance isolation among network flows with different traffic
patterns which co-exist in multi-tenant data centers and typically
have various bandwidth, throughput and latency requirements.

In this paper, we reveal that the drawbacks on isolation
root in the packet-level flow scheduling mechanism implemented
in the RNIC hardware. To solve this problem, we introduce
Palos, a fair and flexible flow-scheduling mechanism. In the
hardware layer, Palos adopts a data chunk based scheduling
mechanism by reconstructing communication descriptors. The
data chunk based scheduling diminishes the performance inter-
ference between large flows and small flows. Palos configures
the scheduler in the software layer using a hierarchical weight
setting to enable customized performance policy while preventing
the configuration of users from interfering each other. Our
experiments demonstrate that Palos provides better performance
isolation and performance control flexibility compared with the
commodity RDMA NIC and existing optimization framework.

Index Terms—Remote Direct Memory Access, Datacenter Net-
work, Quality of Service, Network Interface Card

I. INTRODUCTION

Remote Direct Memory Access (RDMA), which bypasses
the operating system kernel during data transmission, has
been widely deployed as a novel communication technology.
RDMA offloads the entire network stack to the network
interface card (NIC), enabling direct data exchange between
local and remote host memories without kernel involvement,
and hence offers high throughput, low latency with low CPU
overhead. Built on RDMA network, various communication
systems have been developed to support a wide range of
applications [1]–[3].

RDMA faces far more diverse traffic patterns and re-
quirements in data centers. RDMA was originally crafted
to optimize the network performance in High Performance
Computing (HPC) systems, which are built for a specific
set of applications, owned by a limited number of users,
optimized at a full-system level and undertake predictable
workloads [4], [5]. In contrast, data centers support much
more variable and unpredictable workloads. For instance, of
all messages in Google’s datacenter, 30% are smaller than
100 bytes while about 5% are larger than 10KB [6]. Besides,
each node in data centers needs to serve tens of individual
tenants typically having various performance objectives [7],
and each tenant also intends to customize its own performance
rule for network flows [8], [9]. To meet the diverse require-
ments raised in such heterogeneous communication, RDMA

must provide flexible and predictable network capability to
communication instances. Specifically, the performance of a
communication instance—a flow, a tenant, or an application—
should be determined solely by the rules established by users.
And it should not be affected by the communication patterns,
such as message sizes, of other instances.

However, the existing implementations of RDMA cannot
meet the objects above because RDMA NIC (RNIC) en-
counters severe unfairness and interference issues in hetero-
geneous communication scenarios. Our experimental findings
illustrated in Fig. 2 and Fig. 3 indicate that large message flows
dominate the network and hurt the throughput and latency of
small message flows, so that the isolation rule is violated.
Without isolation, it is impossible to achieve predictable
network performance because other communication flows are
unpredictable. Worse still, RDMA bypasses the operating
system, which makes traditional traffic control tools like Linux
tc [10] inapplicable.

Existing works tried to implement transmission control to
achieve network isolation, but these works have drawbacks.
Works on the software like Justitia [11], Harmonic [12] and
PeRF [13] require a daemon to continuously monitor the per-
formance of each flow and dynamically adjust the transmission
rate, therefore inducing additional CPU overhead and latency
which violates the intention of RDMA. Hardware optimization
works [14], [15] achieve high efficiency, but they require much
storage resources for each performance level.

This paper starts solving the isolation issue with experi-
ments and analysis based on the most widely adopted RNIC,
Nvidia ConnectX-5 NIC [16]. We find that the problem
roots in the scheduling mechanism, which fails to protect the
performance of small flows. Therefore, we claim to adopt a
new scheduling mechanism in which each network flow fairly
transmits a certain size of data in each scheduling iteration,
and users can customize performance allocation by adjusting
the scheduling weight for each flow.

Implementing such scheduling mechanism in hardware must
take several key challenges into consideration. First, RNIC is a
complex and tightly-coupled module and undertakes multiple
offloaded functions like reliable transmission [17], address
translation [18] and connection management [1], [17], [19].
To minimize the complexity of hardware modifications, the
scheduling module should be loosely-coupled with the core
module of the RNIC. Second, it is difficult to provide large
number of performance levels by hardware scheduling due to
the limited resource and inflexibility nature of the hardware.

Third, considering that all users share the same hardware and
have the ability to configure the scheduler, it is crucial to
prevent the performance of one user from being influenced
by the configuration of others.

To address the challenges above, we propose Palos, a data
chunk based scheduling mechanism in RNIC, which achieves
the isolation and performance customization of network flows
and tenants. On the hardware, Palos provides a standalone
hardware scheduling module and does not need any modifi-
cation on the RDMA processing component. The scheduling
module slices and combines network messages into fixed-sized
chunks. The software part calculates the chunk size for each
flow based on a hierarchical weighted sharing algorithm. Our
experiments show that within Palos, large flows and small
flows fairly share the same RNIC, and the traffic patterns and
configurations of flows and tenants do not interfere each other.
Also, the performance of each flow is controlled precisely by
manipulating the chunk size.

In summary, our contributions in this paper are as follows:
1) We demonstrate the isolation flaws in the RNIC and ex-

plain that the cause of the interference problem roots in
the unfair scheduling mechanism in the RNIC hardware.

2) We present Palos, a flexible flow scheduler sitting along-
side the RDMA processing module. It schedules flows
based on data chunk, which guarantees the isolation
between different types of flows.

3) We provide a simple configuration interface to achieve
hierarchical weighted performance allocation through
manipulating the data chunk size for each flow.

4) We implement Palos on a Gem-5 based cycle-accurate
RNIC simulator and evaluate its effect. The experiment
results show that Palos achieves ideal isolation and
flexibility for flows and tenants.

II. BACKGROUND AND MOTIVATION

A. RDMA and RNIC

Traditional TCP/IP network copies data from user space
to kernel space in the sender and conversely in the receiver,
because data needs to pass through the kernel protocol stack
which takes at least tens of microseconds [20]. In contrast,
RDMA eliminates these cumbersome data copies and context
switches by offloading the entire network stack into the
hardware. In RDMA, a network flow is instantiated as a Queue
Pair (QP) containing descriptors called Work Queue Elements
(WQEs). WQEs record the location and access permission of
the message data to be transferred.

An RDMA NIC (RNIC) is logically divided into several
components: an RDMA protocol engine, a context manager,
an address manager, and a hardware transport layer. Figure 1
illustrates the workflow of a RDMA operation. Firstly, the user
application places WQEs into the Send Queue of the QP in
the host memory(1⃝). Next, the driver writes a doorbell into a
register on the RNIC to signal a new communication task(2⃝).
The RNIC then retrieves the WQEs based on the information
in the doorbell(3⃝) and DMAs the entire messages from the

Data
Transmission

Context
Manage

Address
ManageSQ

RQ

QP

Message

Memory

App & Driver

WQE Process

doorbell

WQE

①

②

③

④

RNIC

Packet Queue

RDMA Engine

network

Fig. 1: RDMA NIC workflow

host memory(4⃝). Then the Transmission Engine packetizes
the messages in multiple small-sized data packets into the
network. The receiver’s RNIC does the opposite to store the
messages into the host memory.

B. RNIC Isolation Problem

Heterogeneous environments like data center servers under-
take unpredictable applications deployed by multiple individ-
ual tenants. Therefore, traffic patterns in data centers exhibit
significant diversity. Message sizes across different types of
applications can vary thousands or even tens of thousands
times [6]. Furthermore, these tenants typically have different
performance objects [7] and the applications they deploy
also intend to customize performance allocation strategies to
achieve optimized efficiency [8], [9]. Consequently, it is criti-
cal for datacenter network to provide predictable performance
sharing with strong isolation and flexibility.

Unfortunately, RDMA cannot achieve the objects above
due to significant unfairness and isolation issue. Network
flows (i.e. QPs) with different message sizes interfere the
performance of each other and large message flows tend to
dominate the RNIC and starve the co-located flows transmit-
ting small messages. In our experiment based on ConnectX-
5 RNIC shown in Fig. 2, we found that when 16 flows
transmitting 64 byte messages launches communication along
with one flow transmitting 2 MB messages, the message rate
of small flows decreases to 45% of the peak value while
the large flow can keep 67% of bandwidth. It is unfair that
the small flows overnumber the large flow but suffer much
more degradation. In addition, the performance of both types
of flows changes with the size of small messages, which
means the performance of flows has no predictability. The
same problem also happens on latency. In Fig. 3, the latency
of the small flow increases with the number of co-located
flows. 24 large flows can deteriorate the small flow’s latency by
7.8x. Apparently, without the isolation as basic, predictability
is impractical.

The root cause of this problem is that the flow scheduling
mechanism implemented in the commodity RNIC does not
arbitrate flows in a fair manner. The RNIC adopts the packet
Round-Robin scheduling mechanism. In each schedule itera-
tion, every flow sends the same amount of packets, regardless
of the packet sizes. This mechanism is fair only in the case
that all flows send messages larger than the MTU (Maximum

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

16 32 64 128 256 512 1024 2048 4096 8192

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

Small Flow Message Size(Byte)

Small Flow (Measured) Large Flow (Measured)
Small Flow (Calculated) Large Flow (Calculated)

Fig. 2: Interference between one large flow and 16 small
flows on ConnectX-5 NIC as small message size changes. The
dashed line is our calculation results based on packet Round-
Robin scheduling. We test the bandwidth and message rate
of large flows and small flows respectively. The results are
normalized relative to their peak values.

0

2

4

6

8

10

0 4 8 12 16 20 24

la
te

nc
y

(u
s)

Concurrent Bandwidth Flow Number

Latency Measured Latency Calculated

Fig. 3: Interference between one small flow and different
number of concurrent large flows.

Transmission Unit), which is the size limit of one packet.
In the scenario that messages are smaller than MTU, their
transmission rates are determined by their message sizes.
We calculated the performance results based on the packet
Round-Robin scheduling and they perfectly match with our
experiment results in Fig. 2 and Fig. 3, which confirms our
analysis. Considering the MTU of RDMA over Converged
Ethernet (RoCE) is typically 1500 bytes and 60% of messages
in the Hadoop cluster of Facebook are smaller than 1 KB [21],
this problem is a common case in datacenters.

III. DESIGN CONSIDERATION

To enhance the predictability of RDMA in datacenters, it
is necessary to raise a flexible and fair scheduling mechanism
among different types of network flows to replace the con-
ventional packet Round-Robin scheduling. Specifically, this
scheduling mechanism should satisfy the following objects:

1) Flexibility. The scheduling mechanism should provide
hierarchical performance control to allow both system
administrators and tenants to adjust parameters accord-
ing to their preferences. System administrators should
be able to allocate different performance shares among
tenants, and tenants should be able to distribute them
among applications or flows.

2) Isolation. The performance of a flow or a tenant should
be determined exclusively by the preset performance
configuration rules and should not be influenced by
traffic patterns of other flows or tenants.

3) Low Overhead. RDMA aims to achieve ultra-low soft-
ware overhead and latency, which is the reason why
RDMA gets favored. Therefore the scheduling mecha-
nism should have minimal significant software overhead
or time delay.

Reaching the objects above faces several key challenges.
First, to achieve low CPU overhead, we need to implement
the scheduling mechanism on the RNIC hardware. However,
compared with traditional NIC which is only in charge of
packet transmission, RNICs integrate more function like reli-
able transmission [17], address translation [18] and connection
management [1], [17], [19]. The hardware complexity in-
creases the difficulty of modification. Moreover, some vendors
provide the entire RNIC as a ”black-box” IP [22] which
cannot be modified. Therefore, the scheduling mechanism
should be a loosely-coupled component and avoid modifying
the core part of the RNIC. Second, to support flexibility, the
scheduling mechanism allows both system maintainers and
tenants to customize performance rules for each flow. Different
from software with rich host memory capacity and flexible
computation logic, it is a hard job for the hardware to provide
numerous diverse performance levels. For instance, existing
hardware works [14], [15] use dedicated hardware queues for
every scheduling instance which needs large amount of storage
resource, and the algorithm used by software works [11],
[23] are complex and hard to implement on hardware. Third,
the scheduler hardware and the configuration is commonly
shared and all users can set their own performance policy
based on their preferences. In this case, it is essential to
avoid the performance of tenants from being influenced by
the configuration of each other or even malicious users.

IV. PALOS OVERVIEW AND DESIGN

We propose Palos, an innovative RDMA connection
scheduling mechanism. Through the redesigned scheduling
system, we completely avoid the unfairness and interference
resulting from the greedy large messages mentioned before
and ensure improved throughput and reduced latency for
small flows. In addition, our approach allows both system
maintainers and users to regulate the data transfer rate in a
fine-grained manner without hurting the performance isolation.

Within the Palos framework, communication flows are cat-
egorized into multiple distinct groups, with each group repre-
senting either a tenant in multi-tenancy systems or an applica-
tion in mono-tenancy systems. Our design comprises hardware
and software component. The hardware part is responsible
for executing the message slicing and scheduling task, which
involves segmenting sizable messages into multiple smaller
data chunks within the critical data plane path to enable
fine-grained scheduling. The software control path determines
the message slicing size based on performance configurations
specified by users, thereby achieving high flexibility.

Doorbell Process

Message
Slice

DMA

Doorbell

sub-WQE

Scheduler

QP1: weight, groupID...

QP2: weight, groupID...

......

Scheduling
Status Table Group Table

Group1: granularity

Group2: granularity

......
WQE
Fetch

memory

Protocol Process Engine
(RDMA Engine, Address Manager, Context Manager, Data Transmission...)

PCIe

RDMA NIC

User App
post_send()

Host

ibv_modify_qp() set_group()
Driver

Schedule Queue
... 5 10 42 13

WQE Buffer Manage

Work Queue

Network Packet

16 7 12

WQE

WQE

Fig. 4: Hardware architecture of Palos.

A. Data Chunk Based Scheduling

Our main steps to diminish the interference among different
kinds of flows involves enforcing that within each scheduling
period, every flow transmits a determined quantity of data
instead of a specified number of packets as in Round-Robin
scheduling. The configuration of this predetermined quantity
is proceed by users, illustrated later in Section IV-B. In our
research, a scheduling period represents the time interval to
loop through all active flows. Consequently, the ratio among
the throughput of flows is equivalent to the ratio of the user-
specified data quantity across diverse flows no matter how
large the message is.

Different from the packet Round-Robin scheduling adopted
by the commodity RNICs, Palos does not directly slice mes-
sage data because it is a critical problem to efficiently manage
the residual unsent data after slicing a large message. Storing
such data on the NIC gives rise to severe scalability issues
due to the increasing buffer size. To circumvent the intricate
complications associated with the data buffer management, we
insert a scheduling layer between RDMA Protocol Process
Engine and DMA module. Within this approach, the slicing
and shaping of messages is achieved through the reconstruc-
tion of descriptors (WQEs), instead of directly on transmission
packets, so that we need to only consider the management of
WQEs, which is far more simple.

The workflow of Palos is shown in Fig. 5. In the architec-
tural framework of Palos, when the Doorbell Process Module
receives a new doorbell for a QP from user space applications,
it checks whether the head and tail pointers of the work queue
of this QP are identical. If they are different, the QP is in
the state of active, i.e. it has unfinished transmission tasks
waiting to be processed; conversely, the QP is idle. For the
latter case, the Doorbell Process Module updates the head
and tail pointers and put the QP ID into the Schedule Queue

QP ID
QP ID
QP ID

WQE Fetch

①

QP0
Message

Slice

Protocol Processing Engine

QP ID size addr key
0 1GB xxxx xxxx

QP ID size addr key
0 4KB xxxx xxxxQP0

WQE Buffer

③

④

⑥

⑦

ID offset
QP 0 4KB
QP 1 -
QP 2 -
......

⑤

Status Table

Doorbell
Process

②

QP0

PIO

Schedule
Queue

Fig. 5: Palos workflow explanation. This figure takes slicing a
1 GB message from QP 0 into 4 KB messages as an example.
If the message is smaller than 4 KB, the Message Slice module
launches multiple WQEs at one time.

(1⃝). For the former case, the ID of this active QP already
exists in the schedule queue and the Doorbell Processing
Module needs only to update the pointers. WQE Fetch Module
dequeues QP IDs from the schedule queue (2⃝) continuously
and subsequently retrieves a batch of pending WQEs from
the WQE buffer (3⃝) followed by delivering these WQEs
to Message Slicing Module (4⃝), which calculates the size
of a data chunk for the respective QP based on a series of
information such as performance weight and group granularity
and regenerates new WQEs based on this data chunk size.
If the message size is larger than the data chunk size, the
Message Slicing Module regenerates a new WQE in data
chunk size (5⃝), or if the message size is smaller, the Message
Slicing Module combines multiple WQEs until the total size
of this batch of messages meets the data chunk size. The
calculation method detail is illustrated in Section IV-B. The
newly generated and grouped WQEs are then immediately sent
to and processed by the Protocol Process Engine. At the mean
time, the Message Slicing Module updates the header pointer
and fetch offset of this QP (6⃝) and checks the existence of
subsequent WQEs. If such WQEs persist, the module writes
the QP ID back into the tail of the scheduling queue (7⃝).
Because the scheduling system only modifies part of the
segments of WQEs, such as size and address, and does not
change the architecture of the RDMA Protocol Process Engine,
the format of the original WQEs or the RDMA protocol, Palos
is compatible with any RNIC IP such as ERNIC [22] .

B. Software Control Path

As illustrated previously, we accomplish message slicing by
WQE reconstruction to achieve performance isolation and fair-
ness among flows (i.e. QPs). However, although flow isolation
is essential, it is not enough in multi-tenant data centers. First,
the number of QPs created by different kinds of applications
varies in hundreds of times [24], which means flow-level
fairness does not eliminate the interference of different tenants

because one tenant may influence other tenants by establishing
a huge amount of QPs. On the other hand, it is necessary
to provide different performance levels, allowing users to
customize the performance distribution among the QPs they
create to meet their requirements.

To achieve such target, Palos adopts a hierarchical weight
mechanism enabling the system maintainers to assign perfor-
mance weights for each group and tenants to assign weights
for each individual QP. In our design, theoretically the per-
formance of QPx in Groupy should conform the Equation 1,
in which Grp Wy denotes the weight assigned for Groupy ,
WQPx denotes the weight for QPx,

∑
Grp W represents the

sum of weights of all groups and
∑

Grpy
WQP represents the

sum of weights of all QPs in Groupy:

RateQPx =
Grp Wy∑
Grp W

× WQPx∑
Grpy

WQP
×MaxRate (1)

It can be inferred from the formula above that the perfor-
mance distribution of QPs is decided by the chunk sizes, so
the hardware needs to achieve flexible performance allocation
and multi-level isolation through adjusting the chunk sizes.
In summary, we need to establish the mapping relationship
from user-defined weights to data chunk sizes. According to
the aforementioned formula, we claim that the chunk size of
each QPs should be similarly determined as the formula below,
where N represents a constant proportional to the amount of
QPs:

Chunk size =
Grp Wy∑
Grp W

× WQPx∑
Grpy

WQP
×N (2)

Apparently, each QP has a unique chunk size. Maintaining
the chunk size for each QP is another challenge. The simplest
implementation is storing the chunk sizes directly in a table.
However, applications and tenants may migrate their services
and adjust communication requirements frequently in multi-
tenant data centers with their business alteration and datacenter
adjustment. Additionally we notice that the chunk size of
one QP is related with the weights of all other QPs, which
means that the modification of any weight leads to the update
of all QPs. They together introduce operation complexity
on the control path. For instance, in a node establishing
22K QPs as documented in [25] with a 100 MHz clock,
updating the performance weight, creating a QP or migrating
a tenant demands 220us to update the entire chunk size table.
Compared with the fastest RDMA control path implementation
with only several microseconds to establish a QP [26], this
rough design increases the overhead by hundreds of times.

To circumvent the inefficiency induced by such cumbersome
configuration method, we divide the chunk size into two
parts shown in Figure 6: QP Weight and the rest part called
Group Granularity. The QP Weight is stored as a segment
in QP status, and the Group Granularity is stored in another
standalone table. The Message Slicing Module in the hardware
multiplies the two parts to get the chunk size. When a

verbs create_group set_group modify_qp

Descriptor Slicing
Module

Original
WQE

sub-WQE

Fig. 6: Chunk size organization.

modification happens on the performance configuration, the
only action the NIC needs to proceed is to update one item
in the QP Weight Table and the Group Granularity Table. The
amount of tenants in one host is usually far fewer than that of
QPs. As a result, updating the whole Group Granularity Table,
typically in several nanoseconds, does not cause remarkable
time overhead mentioned above. On the software layer, we
add functions create_group and set_group to enable
the weight adjustment among performance groups, and we
modify the function ibv_modify_qp in verbs API to enable
tenants or applications to control the weight and traffic type
of each QP.

C. Priority

From our experiment in Fig. 3 we found that the presence
of large flows increases the latency of small flows. And this
interference is caused principally by increasing the time of
waiting to be scheduled. In addition, the message size of
latency-sensitive flows is typically tens or even hundreds of
times smaller than that of bandwidth-sensitive flows [27] and
less frequent [11]. As a result, latency-sensitive traffic usually
has a minimal impact on other flows [11].

Therefore, to guarantee the timely delivery of latency-
sensitive flows such as key synchronization signals, a strict
high priority is assigned to these flows. This is achieved by
a dedicated Schedule Queue and a limitation of maximum
message size. Latency-sensitive flows need to be labeled by
user applications. WQE Fetch and Message Splitter module
process these flows with strict higher priority.

V. EVALUATION

To evaluate our design, we implement Palos in a cycle-
accurate RNIC simulator based on Gem-5. We set PCIe
bandwidth and network bandwidth to 128 Gbps and 100 Gbps
respectively, same as the ConnectX-5 RNIC.

Our work focuses on traffic scheduling inside the RNIC and
thus we construct our experiments on a two-node platform
to avoid network congestion and jitter from influencing our
result. We use 64 byte message flows as small flows and 2 MB
message flows as large flows if there is no extra explanation.
In our experiment, we set N as the number of QPs times one
MTU, which is 1500 byte in RoCE by default.

Our evaluation results can be summarized as below:
1) The performance of both large flows and small flows

can reach the expectation and have the fair competitive
strength, not affected by their message sizes;

2) In the concurrent communication of large and small
flows, the latency is constant with the number of large
flows grows;

3) The performance of flows and groups can be controlled
precisely through assigning weights by users;

4) The number or the weight assignments of flows inside
one performance group has no impact on flows inside
other groups.

A. Flow Isolation

Palos achieves effective isolation among different communi-
cation flows within the same group. The message size of one
flow does not influence the performance of other coexisting
flows, and large flows and small flows fairly share the RNIC.

0

0.2

0.4

0.6

0.8

1

256 512 1024 2048 4096

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

Small Flow Message Size (Byte)

ConnectX Small Flow ConnectX Large Flow

Palos Small Flow Palos Large Flow

Fig. 7: Isolation between one large and 16 small message flows
in the same scheduling group. The y-axis is the message rate
or bandwidth normalized to its peak performance.

We conduct similar experiments as in Section II-B, which
demonstrates the isolation of communication flows within the
same scheduling group. In this experiment 16 small flows
and one large flow transfer messages to the other node
concurrently, and all flows are in the same group. In the Palos
environment, the performance of both kinds of flows remains
steady as the message size of small flows varies from 256
bytes to 4096 bytes, keeping at about 1

17 and 16
17 of the peak

performance respectively. It indicates that these two kinds of
flows are fairly sharing communication resources. In contrast,
on the ConnectX-5 RNIC, the normalized performance of the
large flow fluctuates from 47% to 0.058% as the message size
of small flows changes from 256 bytes to 4096 bytes, showing
interference and stronger competitiveness compared with small
flows.

Besides mitigating the interference of large flows and
small flows on transmission rate, Palos also diminishes the
interference between large flows and latency-sensitive flows
depicted in Fig. 8. We instantiate varying number of large
flows sending 2 MB messages within the same scheduling
group with latency-sensitive flows sending 16 B messages. On

0

1

2

3

4

5

6

7

0 4 8 12 16 20

L
at

en
cy

 (
us

)

Concurrent Large Flow Number

ConnectX median ConnectX 99% Palos median Palos 99%

Fig. 8: Isolation between different number of large flows
sending 2 MB messages and latency-sensitive flows sending
64 B messages in the same group.

ConnectX-5 RNIC, the latency of the small flow experiences a
5x increase when co-located with 16 large flows, and on Palos
it modestly increases only 1.79x under the same condition.
This result also proves our insight in Section IV-C that large
flows introduce significant scheduling delay to small flows.

B. Group Isolation

Palos also extends its efficacy by offering optimal isolation
among scheduling groups, where neither the quantity nor
the weights of flows within one performance group has any
impact on the performance of another group. In the practical
deployment, each group can be allocated to either a tenant
in multi-tenancy systems or an application in mono-tenancy
systems.

We allocate 16 small flows and a variable amount of large
flows into two distinct groups denoted as Group A and Group
B. We compare our results with ConnectX-5 without QoS
and with QoS provided by OpenSM [28]. In OpenSM QoS,
we divide small and large flows into different virtual lanes.
Besides, we also implement message chunking on the software
similar as Flor [29] and Justitia [11], and set the chunk size
to one Bandwidth-Delay-Product, which is 25 KB, as Flor’s
setting.

The experiment results are shown in Fig. 9. Without QoS,
under the condition that Group B has eight large flows,
the throughput of group A drops to 10% of its throughput
with only one large flow, while the throughput of group B
achieves 1.55x. The QoS and software chunking can protect
the performance of small flows, but is not optimal because
they do not fix the root cause mentioned in Section II-B.
Palos ensures that the number of flows does not affect their
performance because according to the demonstration about our
data chunk size setting in Section IV-B, the performance of
each group is determined only by its weight.

C. Flexibility

To meet the requirement of flexibility raised in Section III,
Palos provides numerous performance levels and hierarchical
performance control in which the performance of both flows
and groups can be adjusted by setting their weights. We
do not compare Palos with any baseline because none of

0

0.2

0.4

0.6

0.8

1

1.2

1 2 4 8 16

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

Large Flow Number in Group B

ConnectX ConnectX + QoS
ConnectX + SW Chunk + QoS Palos

(a)

0.8

1

1.2

1.4

1.6

1.8

1 2 4 8 16

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

Large Flow Number in Group B

ConnectX ConnectX + QoS
ConnectX + SW Chunk + QoS Palos

(b)

Fig. 9: Interference between varying number of large flows
and 16 small flows in two separate groups. The performance
are normalized with respect to the scenario where there is only
one large flow. (a) Message Rate of Small Flows in Group A;
(b) Bandwidth of Large Flows in Group B.

existing works supports such fine-grained performance control
for RDMA.

We create 16 groups weighting from 10 to 25 linearly. Each
group contains two QPs weighting 2 and 3 respectively. The
experiment results in Fig. 10 demonstrate that Palos precisely
controls the performance distribution of each flow and each
group by dynamically manipulating the data chunk size of each
individual flow. This experiment proves that Palos supports at
least 32 performance levels, which is more than eight Service
Levels provided by current RDMA QoS [14]. Considering
creating a performance level only needs a new item in the
QP Status Table and the Group Table, Palos can provide even
more performance levels.

In Palos, adjusting the weights of flows does not break the
isolation between different groups, i.e. change the performance
of any group. In Fig. 11, we categorize six QPs into two groups
assigned with the same weight. In Group A each QP has a
weight of 2, while in Group B, QP 4 and QP 5 have weights
3 and 2 respectively. We varied the weight of QP 4 from 1 to
6. The test results indicate that we can precisely control the
bandwidth allocation inside Group B, without affecting the
performance of Group A. Both Group A and B consistently
maintain a bandwidth of 50 Gbps. In summary, our approach
provides flexibility while ensuring effective isolation.

1.5 1.6 1.7 1.9 2.0 2.1 2.2 2.4 2.5 2.6 2.8 2.9 3.0 3.3 3.4 3.5
2.2 2.3 2.6 2.8 3.0 3.1 3.4

3.7 3.8 4.1 4.2 4.4 4.6 4.8 5.0 5.3

0
1
2
3
4
5
6
7
8
9

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

B
an

dw
id

th
 (

G
bp

s)

Group ID
QP A QP B

Fig. 10: Hierarchical weighted sharing of bandwidth. We
create 16 groups weighted from 10 to 25. Each group contains
two QPs weighted 2 and 3.

16.4 16.4 16.4 16.4 16.4 16.4

16.4 16.4 16.4 16.4 16.4 16.4

16.4 16.4 16.4 16.4 16.4 16.4

24.8 21.4 18.5 16.4 14.7 13.4

16.4
13.9 12.2 10.5 9.7 8.8

8.0 13.9 18.5 21.8 24.8 27.3

0

20

40

60

80

100

1 2 3 4 5 6

B
an
dw
id
th
(G
bp
s)

Weight for QP6

QP1 QP2 QP3 QP4 QP5 QP6

Fig. 11: Bandwidth for each connection when QP 6’s weight
changes. QP 1-3 are weighted 2 and are in one group. QP 4-6
are in the other group. QP 4 and QP 5 are weighted 3 and 2.

VI. RELATED WORKS

Recently, with the application of virtualization technology,
there are plenty of works targeting at NIC isolation and sharing
[7], [30], but most of them work on traditional Ethernet
NIC and needs the involvement of either OS or smartNICs,
therefore they are not applicable on RNICs.

FLOCK [19], ScaleRPC [1] and LITE [31] try to achieve
sharing of RNICs by numerous amount of flows, but they tar-
get at optimizing the scalability issue caused by the hardware
storage resources, instead of the interference of flows.

Justitia [11], PeRF [13] and Harmonic [12] achieve perfor-
mance isolation by dynamically controlling the data transmis-
sion rate based on the performance condition on the RNIC.
Their works are implemented in the software, which increase
the latency and the CPU overhead.

SR-IOV [32] allows multiple virtual machines to access the
same PCIe device as if they have a dedicated device. Palos
can work together with it by assigning each virtual machine
or function as a group and allocate diverse performance levels.

Collie [33] and husky [34] design tools to test performance
anomalies on RNICs and confirm the isolation problem in
RDMA network, but they do not find and fix the root causes.

RDMA QoS [14] provides performance levels by classifying
flows to traffic classes. However, due to the hardware and
protocol limitations, the number of traffic classes is limited,
and it does not support hierarchical performance levels.

VII. CONCLUSION

In this paper, we make a thorough analysis about the
isolation problem in current commodity RNICs, and find that
the scheduling mechanism induces severe performance inter-
ference and unfairness. Guided by this insight, we introduce
Palos, a novel flow scheduling system built on hardware. Palos
manipulates control on the data chunk size for flows on each
scheduling iteration, through which it achieves better isolation
and flexibility. Consequently Palos can help RDMA to better
accommodate heterogeneous traffic in data centers.

REFERENCES

[1] Y. Chen et al., “Scalable rdma rpc on reliable connection with efficient
resource sharing,” in Proceedings of the Fourteenth EuroSys Conference
2019, ser. EuroSys ’19. New York, NY, USA: Association for
Computing Machinery, 2019.

[2] A. Dragojević et al., “FaRM: Fast remote memory,” in 11th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
14). Seattle, WA: USENIX Association, Apr. 2014, pp. 401–414.

[3] Y. Lu et al., “Octopus: an RDMA-enabled distributed persistent memory
file system,” in 2017 USENIX Annual Technical Conference (USENIX
ATC 17). Santa Clara, CA: USENIX Association, Jul. 2017, pp. 773–
785.

[4] D. G. Chester et al., “Understanding communication patterns in HPCG,”
Electronic Notes in Theoretical Computer Science, vol. 340, pp. 55–65,
10 2018.

[5] T. Hoefler et al., “The convergence of hyperscale data center and high-
performance computing networks,” Computer, vol. 55, no. 7, pp. 29–37,
2022.

[6] B. Montazeri et al., “Homa: a receiver-driven low-latency transport
protocol using network priorities,” in Proceedings of the 2018 Confer-
ence of the ACM Special Interest Group on Data Communication, ser.
SIGCOMM ’18. New York, NY, USA: Association for Computing
Machinery, 2018, p. 221–235.

[7] B. Stephens et al., “Loom: Flexible and efficient NIC packet schedul-
ing,” in 16th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 19). Boston, MA: USENIX Association, Feb.
2019, pp. 33–46.

[8] M. Chowdhury and I. Stoica, “Coflow: a networking abstraction for
cluster applications,” in Proceedings of the 11th ACM Workshop on Hot
Topics in Networks, ser. HotNets-XI. New York, NY, USA: Association
for Computing Machinery, 2012, p. 31–36.

[9] M. Chowdhury et al., “Managing data transfers in computer clusters
with orchestra,” SIGCOMM Comput. Commun. Rev., vol. 41, no. 4, p.
98–109, aug 2011.

[10] M. kerrisk, “tc(8) - Linux manual page,” 2001. [Online]. Available:
https://man7.org/linux/man-pages/man8/tc.8.html

[11] Y. Zhang et al., “Justitia: Software Multi-Tenancy in hardware Kernel-
Bypass networks,” in 19th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 22). Renton, WA: USENIX Asso-
ciation, Apr. 2022, pp. 1307–1326.

[12] J. Lou et al., “Harmonic: Hardware-assisted RDMA performance iso-
lation for public clouds,” in 21st USENIX Symposium on Networked
Systems Design and Implementation (NSDI 24). Santa Clara, CA:
USENIX Association, Apr. 2024, pp. 1479–1496.

[13] S. Lee et al., “PeRF: Preemption-enabled RDMA framework,” in 2024
USENIX Annual Technical Conference (USENIX ATC 24). Santa
Clara, CA: USENIX Association, Jul. 2024, pp. 209–225. [Online].
Available: https://www.usenix.org/conference/atc24/presentation/lee

[14] Mellanox, “Deploying Quality of Service and Congestion Control
in InfiniBand-based Data Center Networks,” 2005. [Online].
Available: https://network.nvidia.com/pdf/whitepapers/deploying qos
wp 10 19 2005.pdf

[15] Y. Liao et al., “Optimize the tx architecture of rdma nic for performance
isolation in the cloud environment,” in Proceedings of the Great Lakes
Symposium on VLSI 2023, ser. GLSVLSI ’23. New York, NY, USA:
Association for Computing Machinery, 2023, p. 29–35.

[16] Mellanox, “CONNECTX-5 Datasheet,” 2020. [Online]. Available:
https://network.nvidia.com/files/doc-2020/pb-connectx-5-en-card.pdf

[17] Z. Wang et al., “SRNIC: A scalable architecture for RDMA NICs,” in
20th USENIX Symposium on Networked Systems Design and Implemen-
tation (NSDI 23). Boston, MA: USENIX Association, Apr. 2023, pp.
1–14.

[18] A. Psistakis et al., “Optimized page fault handling during rdma,” IEEE
Transactions on Parallel and Distributed Systems, vol. 33, no. 12, pp.
3990–4005, dec 2022.

[19] S. K. Monga et al., “Birds of a feather flock together: Scaling rdma
rpcs with flock,” in Proceedings of the ACM SIGOPS 28th Symposium
on Operating Systems Principles, ser. SOSP ’21. New York, NY, USA:
Association for Computing Machinery, 2021, p. 212–227.

[20] J. Ousterhout, “A linux kernel implementation of the homa transport
protocol,” in 2021 USENIX Annual Technical Conference (USENIX ATC
21). USENIX Association, Jul. 2021, pp. 99–115.

[21] A. Roy et al., “Inside the social network’s (datacenter) network,”
SIGCOMM Comput. Commun. Rev., vol. 45, no. 4, p. 123–137, aug
2015.

[22] AMD and Xilinx, “AMD Adaptive Computing Documentation
Portal,” 2023. [Online]. Available: https://docs.xilinx.com/
r/en-US/pg332-ernic/Xilinx-Embedded-RDMA-Enabled-NIC-v4.
0-LogiCORE-IP-Product-Guide

[23] D. Shen et al., “Distributed and optimal rdma resource scheduling in
shared data center networks,” 07 2020, pp. 606–615.

[24] A. Shieh et al., “Sharing the data center network,” in Proceedings
of the 8th USENIX Conference on Networked Systems Design and
Implementation, ser. NSDI’11. USA: USENIX Association, 2011, p.
309–322.

[25] Y. Gao et al., “When cloud storage meets RDMA,” in 18th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
21). USENIX Association, Apr. 2021, pp. 519–533.

[26] X. Wei et al., “KRCORE: A microsecond-scale RDMA control plane
for elastic computing,” in 2022 USENIX Annual Technical Conference
(USENIX ATC 22). Carlsbad, CA: USENIX Association, Jul. 2022,
pp. 121–136.

[27] Y. Zhang et al., “Aequitas: Admission control for performance-critical
rpcs in datacenters,” in Proceedings of the ACM SIGCOMM 2022
Conference, 2022, pp. 1–18.

[28] Nvidia, “OpenSM - NVIDIA Docs,” 2023. [Online]. Available:
https://docs.nvidia.com/networking/display/mlnxofedv461000/opensm

[29] Q. Li et al., “Flor: An open high performance RDMA framework
over heterogeneous RNICs,” in 17th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 23). Boston, MA: USENIX
Association, Jul. 2023, pp. 931–948.

[30] S. Grant et al., “Smartnic performance isolation with fairnic: Pro-
grammable networking for the cloud,” in Proceedings of the Annual
Conference of the ACM Special Interest Group on Data Communication
on the Applications, Technologies, Architectures, and Protocols for
Computer Communication, ser. SIGCOMM ’20. New York, NY, USA:
Association for Computing Machinery, 2020, p. 681–693.

[31] S.-Y. Tsai and Y. Zhang, “Lite kernel rdma support for datacenter
applications,” in Proceedings of the 26th Symposium on Operating
Systems Principles, ser. SOSP ’17. New York, NY, USA: Association
for Computing Machinery, 2017, p. 306–324.

[32] J. Jose et al., “Sr-iov support for virtualization on infiniband clusters:
Early experience,” in 2013 13th IEEE/ACM International Symposium on
Cluster, Cloud, and Grid Computing, 2013, pp. 385–392.

[33] X. Kong et al., “Collie: Finding performance anomalies in RDMA
subsystems,” in 19th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 22). Renton, WA: USENIX Association,
Apr. 2022, pp. 287–305.

[34] X. Kong et al., “Understanding RDMA microarchitecture resources
for performance isolation,” in 20th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 23). Boston, MA: USENIX
Association, Apr. 2023, pp. 31–48.

